A Fortin Operator for Taylor-hood Elements

نویسنده

  • RICHARD S. FALK
چکیده

by elements of Taylor-Hood type. More specifically, for k = 2, 3, the velocity vector u is approximated in the space V k0,h = V k h ∩ H10(Ω), where V kh is the space of continuous piecewise polynomial vectors of degree ≤ k and the pressure p is approximated in the space Qk−1 h consisting of continuous piecewise polynomials of degree ≤ k−1. The stability of these pairs depends on verification of the classical inf-sup condition

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fortin Operator for Two-dimensional Taylor-hood Elements

by elements of Taylor-Hood type where Ω is a polygon in R (when triangular elements are considered) or a union of rectangles in R (when rectangular elements are considered). The construction of the Fortin operator will be given in detail for the case of triangular elements. The extension to rectangular elements is discussed briefly in the final section of the paper. More specifically, for trian...

متن کامل

A uniformly stable Fortin operator for the Taylor-Hood element

We construct a new Fortin operator for the lowest order Taylor–Hood element, which is uniformly stable both in L and H. The construction, which is restricted to two space dimensions, is based on a tight connection between a subspace of the Taylor– Hood velocity space and the lowest order Nedelec edge element. General shape regular triangulations are allowed for the H–stability, while some mesh ...

متن کامل

Max-Norm Stability of Low Order Taylor-Hood Elements in Three Dimensions

We prove stability in W 1,∞(Ω) and L∞(Ω) for the velocity and pressure approximations, respectively, using the lowest-order Taylor-Hood finite element spaces to solve the three dimensional Stokes problem. The domain Ω is assumed to be a convex polyhedra.

متن کامل

Stenberg’s sufficiency criteria for the LBB condition for Axisymmetric Stokes Flow

In this article we investigate the LBB condition for axisymmetric flow problems. Specifically, the sufficiency condition for approximating pairs to satisfy the LBB condition established by Stenberg in the Cartesian coordinate setting is presented for the cylindrical coordinate setting. For the cylindrical coordinate setting, the Taylor-Hood (k = 2) and conforming Crouzeix-Raviart elements are s...

متن کامل

Stenberg’s sufficiency condition for Axisymmetric Stokes Flow

In this article we investigate the LBB condition for axisymmetric flow problems. Specifically, the sufficiency condition for approximating pairs to satisfy the LBB condition established by Stenberg in the Cartesian coordinate setting is presented for the cylindrical coordinate setting. For the cylindrical coordinate setting, the Taylor-Hood (k = 2) and conforming Crouzeix-Raviart elements are s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006